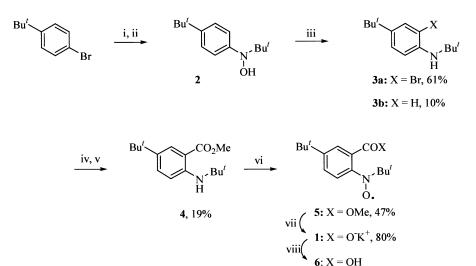


Tetrahedron Letters 43 (2002) 2613-2614

TETRAHEDRON LETTERS


Hetero-Cope rearrangement for the synthesis of potassium 5-tert-butyl-2-(tert-butyl-aminoxy)-benzoate, a highly water-soluble stable free radical

Lucien Marx and André Rassat*

Ecole Normale Supérieure and CNRS, 24 rue Lhomond, F75231 Paris, Cedex 05, France Received 6 February 2002; accepted 8 February 2002

Abstract—The hetero-Cope rearrangement of 4-*tert*-butyl-phenyl-*tert*-butylhydroxylamine provides an easy access to the corresponding *ortho*-bromoaniline, converted to the new highly water-soluble nitroxide, potassium 5-*tert*-butyl-2-(*tert*-butyl-aminoxy)-benzoate. The parent carboxylic acid was found to be very persistent in water at pH 1. © 2002 Elsevier Science Ltd. All rights reserved.

A high solubility in water of nitroxide free radicals is requested in different applications such as electron spin resonance¹ or magnetic resonance imaging,² protection from oxidative stress and radiative damage,³ radical polymerization,⁴ and spin labeling.⁵ Some carboxylate nitroxides⁶ in which the negative charge increases the hydrophilicity have been isolated, but to our knowledge no aromatic one. We present here the synthesis of a water-soluble aromatic carboxylate nitroxide 1, in which the *tert*-butyl substituent on the aromatic ring provides a convenient protection from the usual bimolecular disproportionation.⁷ To our knowledge, such nitroxides have not been tested yet in controlled radical polymerization⁴ in water.

Scheme 1. Reagents and conditions: (i) tert-BuLi, THF, -78° C, then 0° C, 2 h; (ii) tert-BuNO, -78° C, 95%; (iii) SOBr₂ (1.1 equiv.), Et₃N (1.1 equiv.), CH₂Cl₂, 0° C then rt, 24 h; (iv) tert-BuLi (3.3 equiv.), THF, -78° C, then -10° C, 45 min; (v) (MeO)₂CO (5 equiv.), -78° C, then rt 10 h; (vi) *m*-CPBA, CH₂Cl₂, rt; (vii) tBuOK, H₂O, THF, 24 h; (viii) HCl (1 mM).

Keywords: nitroxides; hydroxylamines; carboxylate; hetero-Cope rearrangement; decomposition.

^{*} Corresponding author. Tel.: +33 (0)144323325; fax: +33 (0)144323325; e-mail: andre.rassat@ens.fr

The hydroxylamine **2**, easily prepared in high yield $(95\%)^8$ by a modification (lithiation of 4-*tert*-butyl-bromobenzene) of the published procedure⁹ (Scheme 1) is a convenient starting material. Functionalization at the nitrogen *ortho* position of **2** was achieved by a hetero-Cope rearrangement, analogous to the one reported by Nikrad.¹⁰

Thus, reaction of **2** with thionyl bromide gave the brominated aromatic amine $3a^{11}$ (61%)⁹ and the amine $3b^{12}$ (10%).⁹ The lithio-derivative of 3a was reacted with dimethylcarbonate¹³ to afford 4^{14} (19%)⁹ and 3b (57%).⁹ Compound **4** was oxidized by *m*-CPBA to the nitroxide 5^{15} (47%)⁹ which was then hydrolyzed with freshly prepared KOH.¹⁶ Evaporation to dryness and trituration of the residue with ether led to carboxylate 1,¹⁷ an orange solid, indefinitely stable in the solid state. Compound **1** was found to be soluble in water at a concentration of 40 mM, one of the highest reported solubility for a nitroxide.^{6c}

A solution of carboxylic acid **6** was obtained by dissolving **1** (5×10^{-3} M) in molar hydrochloric acid. When **6** was kept under these very acidic conditions during 24 h at room temperature, the intensity of its ESR signal only lost half of its initial value. Contrary to other nitroxides, **6** is thus extremely persistent at pH 1: under the same conditions, a typical nitroxide, TEMPOL has a half-life of 5.5 h while another carboxylic acid nitroxide decomposes even much more rapidly.^{6b}

In conclusion we have developed a short synthesis of a highly water-soluble aromatic nitroxide in five steps. The bromoaniline 3a, easily available on a gram-scale, is a potentially useful derivative for the synthesis of highly substituted aromatic nitroxides, since it may allow the introduction of a variety of substituents, as illustrated here by the preparation of 5.

References

- Eaton, S. S.; Eaton, G. R. In *Electron Paramagnetic Resonance*; Gilbert, B. C.; Davies, M. J.; Mc Lauchlan, K. A., Eds.; Royal Society of Chemistry: Cambridge, 2000; Vol. 17, pp. 109–129.
- Gallez, B.; Demeure, R.; Debuyst, R.; Dejehet, F.; Dumont, P. Magn. Reson. Imaging 1992, 10, 445–455.
- Bar-On, P.; Mohsen, M.; Zhang, R.; Feigin, E.; Chevrion, M.; Samuni, A. J. Am. Chem. Soc. 1999, 121,

8070-8073.

- Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K. *Macromolecules* 1993, 26, 2987–2988.
- Berliner, L. In *Biological Magnetic Resonance*; Berliner, L., Ed.; Plenum Press: New York, 1998; Vol. 14.
- (a) Hideg, K.; Lex, L. J. Chem. Soc., Perkin Trans. 1 1987, 1117–1121; (b) Keana, J. F. W.; Pou, S. J. Org. Chem. 1989, 54, 2417–2420; (c) Reid, D. A.; Bottle, S. E.; Micallef, A. S. Chem. Commun. 1998, 1907.
- 7. Calder, A.; Forrester, A. R. Chem. Commun. 1967, 682.
- 8. Isolated yield after column chromatography.
- Torssell, K.; Goldman, J.; Petersen, T. E. Liebigs Ann. Chem. 1973, 231–240.
- Ayyangar, R. N.; Kalkote, U. R.; Nikrad, P. V. Tetrahedron Lett. 1982, 23, 1099–1102.
- 11. (2-Bromo-4-*tert*-butyl-phenyl)-*tert*-butyl-amine **3a**: $\delta_{\rm H}$ (CDCl₃, 250 MHz): 7.366 (d, J=2.29 Hz, 1H); 7.084 (dd, J=2.29, 8.63 Hz, 1H); 6.846 (d, J=8.63 Hz, 1H); 4.09 (s, 1H); 1.31 (s, 9H); 1.193 (s, 9H); δ_{13C} (CDCl₃, 50 MHz): 141.4, 141.2, 129.4, 124.7, 115, 112.3, 51.5, 33.7, 31.3, 29.8; EIMS: m/z (%) 284, 286 (M, 85.8, 82.8), 214 (31.3), 206 (20.2), 150 (21.7), 106 (100). Anal. calcd for C₁₄H₂₂BrN: C, 59.15; H, 7.74; N, 4.92. Found: C, 59.28; H, 7.72; N, 4.9%.
- Nelsen, S. F.; Landis, R. T.; Kiehle, L. H.; Leung, T. H. J. Am. Chem. Soc. 1972, 94, 1610–1614.
- 13. Satyanarayana, G.; Sivaram, S. Synth. Commun. 1990, 20, 3273–3276.
- 14. 5-*tert*-Butyl-2-*tert*-butylamino-benzoic acid methyl ester
 4: δ_H (CDCl₃, 250 MHz): 7.837 (d, J=2.56 Hz, 1H);
 7.296 (dd, J=2.56, 9 Hz, 1H); 6.827 (d, J=9 Hz, 1H);
 1.364 (s, 9H); 1.207 (s, 9H); 3.773 (s, 3H); δ_{13C}(CDCl₃, 50 MHz): 169.22, 148.22, 136.02, 131.17, 127.74, 113.56, 109.60, 51.16, 50.26, 33.42, 31.12, 29.60; EIMS: m/z (%) 263 (M-15, 42.6), 248 (100), 216 (92.2), 192 (75.2). Anal. calcd for C₁₆H₂₅NO₂: C, 72.97; H, 9.57; N, 5.32. Found: C, 72.82; H, 9.67; N, 5.22%
- 15. 5-*tert*-Butyl-2-(*tert*-butyl-aminoxy)-benzoic acid methyl ester 5: red oil; EIMS: m/z (%) 263 (M-15, 10) 207 (26.3) 192 (100). Anal. calcd for C₁₆H₂₄NO₃: C, 69.04; H, 8.69; N, 5.03%. Found: C, 68.87; H, 8.89; N, 4.94%. EPR, toluene, $a_{\rm N}$ =13.63 G, (unresolved $a_{\rm H}$); EtOH, $a_{\rm N}$ =14.2 G, (unresolved $a_{\rm H}$).
- Gassman, P. G.; Schenlk, W. N. J. Org. Chem. 1977, 42, 918–920.
- 17. Potassium 5-*tert*-Butyl-2-(*tert*-butyl-aminoxy)-benzoate: orange solid, mp \geq 250°C; MS (FAB): m/z (%)=264.27 ([M-(K⁺)]⁻, 59), 248.26 (100). EPR, EtOH, $a_{\rm N}$ =15.64 G, (unresolved $a_{\rm H}$); H₂O, $a_{\rm N}$ =16.29 G, (unresolved $a_{\rm H}$).